		_	12	0.0
\mathbf{D}	Took		mest	or 6
	100	1 2	111251	-r

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
01	Aircraft structure-II	Hari Keishona (564)	Unsymmetrical Bending * Principle axis method * Neutral axis method * Bending stress of Z section. * Bending stress of L section	02/4/2016
02	Aircraft structure-II	Rahul Babu (568)	Bending stress calculation * Bending stress calculation using principle axis method. * Bending stress calculation using neutral axis method. * Bending stress calculation using K-Method.	02/4/2016
03	Aircraft structure-ll	Mohit (571)	Application of unsymmetrical bending * Bending stress for mono spar and multispeed beam. * Bending stress distribution on stringer and ribs. * Design of lightening holes in wing structure.	02/4/2016
04	Aircraft structure-II	Amey (572)	Shear flow in closed section. * Concept of shear flow, ELastic axis shear centre. * Thin walled beam's analysis. * Calculation method of shear centre and shear flow.	02 4 2016
05	Aircraft structure-II	Manvendra (573)	Shear flow in thin walled bean * Shear flow of thin walked beam's in fuselage. * Shear flow of thin walled beam's in wing. * Shear flow of thin walled bean on tail plane unit.	02/4/2016

-		_		_
\Box	loch	Con	ancto	r h
О.	I CUII.	. Sen	IESLE	:1 -0

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
06	Aircraft structure-II	Vinay (578)	Shear flow in unsymmetrical bean section * Shear on flow in channel c section * Shear flow in angle L section. * Application in aircraft structure components.	02/4/2016
07	Aircraft structure-II	Vaghela (579)	Shear flow in closed section * Application of bredt-batho formula. * Bred batho for close Loops. * Calculation of shear flow in and on rectangular rings.	02/4/2016
08	Aircraft structure-II	Mayank (580)	Single and multi- cell structures * Concept of single cell and multicell structure. * Application of multicell structure. * Shear flow in single and multicell structure.	02 4 2016
09	Aircraft structure-II	Chivam (586)	Shear flow in single and multicell under bending * Shear flow due to bending. * Graphical representation of shear flow in multicell. * Concept of effective and in effective cell bending of walls.	16/4/2016
10	Aircraft structure-II	Adesh (587)	Buckling of plates. * Various condition of bucking and crippling stress. * Bucking of rectangular sheets under compression. * Application of short and long column.	16/4/2016

-		_			-
D 10	Ch	Sor	nac	tor	-
B.Te	CH.	OCI	1162	וכו	-c

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
11	Aircraft structure-II	Akshay (588)	Needham's and Gerard's method. * Application of needham's method * Various end condition of needham's method. * Application of Gerard's method. * Calculation method for thin walled section.	16/4/2016
12	Aircraft structure-II	Anny (592)	Thin walled column strength. * Calculation of stiffness strength on stiffnes plates. * Calculation of effective width. * Thermal post bucking of aircraft wing.	16/4/2016
13	Aircraft structure-II	Akash (594)	Stress Analysis in wing and fuselage * Stress distribution or wing surface (Different place) * Stress distribution over fuselage system * Concept of dension field bean (Wagner's type.)	161412016
14	Aircraft structure-II	Tanya (598)	Shear and bending moment distribution. * Relation between shear force & bending moment. * Shear force and bending moment diagram's for cantilever and semi cantilever beam. * Application of condition and semi cantilever beam.	161412016
15	Aircraft structure-II	Omlaar (599)	Loads on Aircraft. * Type of load acting on aircraft during flight condition. * Lift distribution pattern on different planform. * V-N diagram application. * Effect of gust load.	16/4/2016

B.	Tech	. Semester -	R
D.	ICUII.	. טכוווכטנכו -	v

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
01	Aircraft Design	Ablushek (605)	Proposing and fuel system integration. * Introduction * Propulsion selection * Jet engine integration * Proper engine integration	16/4/2016
02	Aircraft Design	Hemain (606)	Landing gear geometry and arrangements * Introduction * Landing gear arrangements * Tire sizing * Shocking absorbers * Casting-wheel geometry * Gear retraction geometry	
03	Aircraft Design	Arwind (607)	Aircraft subsystem * Hydraulics * Electrical system * Pneumatic system * Auxiliary/Emergency Power * Avionics	,
04	Aircraft Design	Nihung (609)	Aerodynamic coefficients: * Introduction to lift and drag * Lift coefficient * Drag coefficient * Drag polar curves * Subsonic Lift-curve slope * Supersonic Lift-curve slope	

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
			* Transonic Lift-curve slope * Non-liner lift effects * Maximum lift	
05	Aircraft Design	Kushan (610)	Loads on flight * Introduction * Loads categories * Air loads * Inertial loads * Power-Plant loads * Landing gear loads	
06	Aircraft Design	Ceantile (618)	Types of drags acting on an aircraft * Introduction * Transonic drag rise * Skin friction drag * Wave drag * Interference drag * Parasite drag * Induced drag	,
07	Aircraft Design	Fulderk (691)	Airfoil selection in Aircraft design * Introduction * Airfoil selection procedures * Airfoil geometry * Leading edge radius * Selection of chord length and camber * Airfoil families	

B.T	ech.	Semes	ster-6

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
08	Aircraft	Q 1 A 1(99)	 Early airfoils NACA airfoils (4 digit , 5 digit, 6 digit) Modern airfoils (Leaseman , Lieback , Super critical) Aircraft design process	
	Design	Prachant (622)	 * Introduction to aircraft design * Phases of aircraft design - Conceptual design phase - Preliminary design phase - Detailed design phase * Mission profiles/ requirements for design initiation * Wing design process * Engine sizing 	
09	Aircraft Design	Upender Reddy (623)	Aircraft weight estimation * Introduction * Gross take - off weight estimation * Empty weight estimation * Fuel-fraction estimation * Fuel fraction calculation based on mission segments.	
10	Aircraft Design	Kalul (626)	High lift devices * Introduction * Lift augmentation devices * Flaps and its types * Slots and its types	

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
11	Aircraft Design	Shashi kant (629)	* Slats and its types * Role and mechanism of working of high lift devices * Role of high lift devices during landing and take - off Boundary layer formation and control * Introduction to boundary layer * Boundary layer formation * Boundary layer thickness * Velocity profiles within boundary layer * Boundary layer separation * Flow reversal Boundary layer control - Boundary layer suction - Boundary layer blowing	
12	Aircraft Design	Premjeet (630)	Wing planforms in aircraft design * Introduction * Types of wing planforms * Rectangular wings * Elliptical wing theory * Tapered wings for elliptical lift distribution * Dihedral wings * Endaural wings * Swept back wings * Swept forward wings * Delta wings (For high speed performances)	

	^
B.Tech. Semester	-h

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
13	Aircraft Design	Saumya (633)	VTOL aircraft design * Introduction * VTOL terminology * Fundamental problems of VTOL design * VTOL jet propulsion options * Vectoring nozzle types * VTOL propulsion considerations * Weight effects of VTOL * Sizing effects of VTOL	
14	Aircraft Design	Chirag (634)	Aircraft flight controls * Introduction * Aircraft Lateral, longitudinal and vertical axis * Aircraft moments - Pitching moment - Yawing moment - Rolling moment * Flight controls - Pitching moment control using elevators - Yawing moment control using rudder - Rolling moment control using ailerons	
15	Aircraft Design	Korvya (636)	Aircraft engine controls * Introduction * Basic controls and indicators - Master switch - Throttle - Propeller control	

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
			 Mixture control Ignition switch Tachometer Manifold pressure gauge Oil temperature gauge Oil pressure gauge 	
		•	* Fuel - Fuel primer pump - Fuel quantity gauge - Fuel select valve - Fuel pressure gauge - Fuel boost pump switch * Cowl - Cowl flap position control - Cylinder head temperature gauge	

	_	_			_
\mathbf{R}	Гесh.	Son	naci	or	h
D.	CUI.	OCI	1100		-0

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
01	Computational Fluid Dynamics	Rishi. (640)	History and scope of CFD * Historical perspective with arising of need and invention * Current trends and areas of implementation * Future prospects	
02	Computational Fluid Dynamics	Robert (644)	Brief overview of the governing equations of fluid flow * CFD is fluid dynamics with an adjective computational * Physical principles of fluid flow * Write the complete Navier Stokes equations * Write the equations for unsteady two dimensial inviscid flow. * Some comments on the governing equations	
03	Computational Fluid Dynamics	Siddarth (645)	Discretization * Meaning * Requirement * Types * Differences between FDM, FVM and FEM, giving advantage and limitations.	
04	Computational Fluid Dynamics	Sumeet (647)	Unstructured grides- scope and future * Definition, explain difference from structure grides * Areas of application * Types of discretization suitables for these * Advantage and applications areas * Future	

R Toc	h Sam	ester-6
D. IEC	II. OEIII	C21C1 -(

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
05	Computational Fluid Dynamics	Villin (648)	Numerical methods * Needs for numerical methods * Areas of applications of such methods * Relevance to computational fluid dynamics * Importance of algorithms	A
06	Computational Fluid Dynamics	Shubham (649)	Experimental approach VS theoritical approach to fluid dynamics * Historical perspective giving meaning of the above terms * Advantage and limitations of both approachs	
07	Computational Fluid Dynamics	Ashish (657)	Physical experiment VS numerical experiments * Meaning of the terms * Pros and cons	
08	Computational Fluid Dynamics	Akanéhi (658)	Boundary conditions and Intial conditions in CFD * Meaning * Requirements * Examples	
09	Computational Fluid Dynamics	Reena (657)	Basis of finite volume methods * Advantages * Applications * Some theory	

		_	- 2	_
	ach	. Sen	nacto	or h
D.	CUL	. OEII	ICOLO	31 -O

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
10		Gopal (661)	Basis of finite elements method * Some theory explaining the meaning * Applications * Advantages	
11	Computational Fluid Dynamics	Denesh (662)	Tranctation errors and consistency * Definition with examples	
12	Computational Fluid Dynamics	Rupesh (677)	Maccoarmark scheme * Explanation with examples	
13	Computational Fluid Dynamics	Dinesh (662) Rupesh (677) Vinay (678)	Vecrtar and parallel computing * Definitions * Comparison * Areas of applications	
14	Computational Fluid Dynamics	Vikin (680)	Grid generation * Meaning * Methods like algebraic and PDF based * Need and applications	
15	Computational Fluid Dynamics	Aubit (689)	FDM applied to linear advnection * Conservation law * Meaning of convertion and diffusion * Derivation of convection diffusion equation	

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
01	Aerodynamics-I	Akhinish (690)	The standard Atmosphere * International Standard Atmosphere * Structure of Atmosphere * Composition related layers * Temperature related layers * Troposphere * Stratosphere * Mesosphere * Thermosphere * Exosphere * Ozone layer * Radiation related layers	
02	Aerodynamics-I	Diwabar (698)	* Temperature Altitude * Pressure Altitude * Density Altitude * Geo-potential Altitude * Geometric Altitude * Homogenous Atmosphere * Hetrogenous Atmosphere * Lower Atmosphere * Middle Atmosphere * Upper Atmosphere * Physical Atmosphere	

D -	T	^	-
H	IACh	Semester	· _h
D.	ICUII.	OCHICOLO	-0

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
03	Aerodynamics-I	Durgesh (703)	Viscous Flow * Laminar Flow * Transition * Turbulence Flow * Renolds number * Shear stress in Laminar Flow * Laminar flow over flat plate * Newton's law of viscosity * Flow separation due to viscosity * Turbulent flow over flat plate * Shear stress in Laminar flow	
04	Aerodynamics-I	Rahul (567)	Boundary Layer * Laminar Boundary layer * Boundary layer thickness * Displacement Thickness * Momentum Thickness * Energy Thickness * Momentum Integral equation * Prandtl mixing length concept * Turbulent boundary layer thickness * Skin friction coefficient * Drag force calculation in Laminar boundary layer * Drag force calculation in turbulent boundary layer.	

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
05	Aerodynamics-I	Diwaher (569) Yighal (570)	Generation of lift Basic concept * Uniform flow * Stream function & Potential function * Source & Sink flow * Stream function and potential function of source flow * Stream function and potential function of sink flow * Combination of source and sink flow (Doublet flow) * Stream function and potential function of doublet flow * Vortex flow and stream function vortex flow * Combination of uniform and doublet flow * Stream function and potential function of combine (uniform + doublet) flow Flow over non lifting & lifting cylinder * (Uniform + Doublet) flow * Stream function and potential function * Radial velocity at radius R. * Pressure distribution over non-lifting cylinder * (Uniform + Doublet + Vortex) flow * Stream function & Potential function * Radial velocity at radius R. * Angular velocity over lifting cylinder.	

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
07	Aerodynamics-I	opinion (5 (6)	Generation of lift (Joukroski Theorem) * Joukroski Circulation theory * The Kutta condition * Joukowski Transformation * Transform circle into straight line * Transform circle into symmetrical airfoil * Transform circle into cambered airfoil	
08	Aerodynamics-I	Rapshit (577)	Thin Airfloil Theory -Flat Plate * About thin Airfloil * Thin Airfloil equation for Flat Plat * Lift coefficient * Lift slope * Moment coefficient about near by edge * Moment coefficients about generator chord point * Aerodynamic center	F
09	Aerodynamics-I	Rishabli (589)	Thin Airflow Theory for Cambered airfloil * General thin airfoil equation * Cambered thin airfoil equation * Lift coefficient * Induced angle of attack * Lift slope * Moment coefficients about generator chord point * Aerodynamic centre	

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
10		Mohd. Aarlief (590)	Infinite & Finite wing * Infinite wing * Lift calculation for Infinite wing * Drag calculation for Infinite wing * Moment calculation for Infinite wing * Finite wing * Lift calculation for finite wing * Drag calculation for finite wing * Induced angle of attack	
11	Aerodynamics-I	Nigarkaun (±93)	Lifting line theory * Down wash * Effective angle of attack * Vortex line * Vortex filament * Bond vortex * Horse shoe vortex * Lifting line * Bio-savart law * Elliptical lift Distribution	
12	Aerodynamics-I	Beg° Blushan (596)	Low Speed wind Tunnel * Open circuit wind tunnel * Close circuit wind tunnel * Blow down type wind tunnel * Suction type wind tunnel * Efusserr design * Test suction design * Throat tunnel design * Diffuser design * Driving unit	

D .	T - 1-	Semes	1	~
н	IACD	Semes	ETOr.	-h
D .	ICCII.	OCHIC		- U

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
13	Aerodynamics-l	Paritosh (597)	High speed wind tunnel * Blow down type wind tunnel * Induction type wind tunnel * Advantage & Disadvantage of blow down wind tunnel * Advantage & Disadvantage of Induction type wind tunnel * Intermittent type supersonic wind tunnel * Continues type supersonic wind tunnel * Effect of second throat in supersonic wind tunnel	
14	Aerodynamics-I	Naveen (602)	Flow visualization Techniques * Smoke generator method * Chemical coating method * Interferometer method * Schlieren and shadow graph method * Hot-wire Anemometer to measure velocity	
15	Aerodynamics-I	Seintoch (604)	Wind Tunnel Balance * Basic feature of wire-type of balance * How to measure the Aerodynamic forces by wire-type balance * Basic feature of strut-type balance * How to measure the Aerodynamic forces by strut-type balance * Basic feature of platform type balance * How to measure the Aerodynamic forces by platform type balance * Basic feature of strain gauge type balance * How to measure the Aerodynamic forces by this method	

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
01	Digital Techniques	Risliabh (608)	The octal number system * Importance of octal system * Octal to binary conversion * Binary to octal conversion * Octal to decimal conversion * Decimal to octal conversion * Octal arithmetic * Application	
02	Digital Techniques	Rahul (612)	Binary codes * Verification of binary codes * BCD system * BCD addition * BCD subtraction * XS-3code * Gray code * User detecting codes * Error correcting codes	
03	Digital Techniques	Sapua (614)	Boolean algebra * Introduction * Logic operations - AND - OR - NOT - NAND - NAND - NOR - XOR & X-NOR * Laws of boolean algebra * Applications	

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
04	Digital Techniques	Akash (615)	Karnaugh map * Introduction * Basic diagram * 2 variable & 3 variable K-Map * SOP expression * POS expression * Applications	
05	Digital Techniques	Mausi (619)	Quite- Mc-cluskey method * Introduction to the method * Decimal representation * Don't care * Prime implicant chart * The branchingmethod * Applications	
06	Digital Techniques	Rajio (625)	Adders * Introduction to adders * Design procedure * The half adder * The full adder * Applications	
07	Digital Technique	luran (627)	Subtracters * Introduction to subtracters * Design procedure * The half subtracter * The full subtracter * Applications	

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
08	Digital Technique	Akhil (629)	Code convertors * Introduction * Design of 4 bit binary to gray code convertor * Design of a 4 bit binary to BCD Code converter * Design of 4 bit BCD to XS-3 code converter * Applications	
09	Digital Technique	Sermer (632)	Parity Bit Generation * Introduction * Parellel parity bit generator for harning codes * Design of or Even parety bit generator for a 4 * Basic 2 i/p MUX * 4 i/p MUX * Applications of MUX	
10	Digital Technique	Adil (635)	Comparators * Introduction * 1-Bit magnitude comparator * 2-Bit magnitude comparator * 4-Bit magnitude comparator * IC Comparator * Application	
11	Digital Technique	Aman (637)	Encoders * Introduction * Block diagrams * Equations * Octal to Binary encoders * Decimal to BCD Encoders * Application	

_	-	_	
	loch	. Semes	tar - h
D.	ICUI	. OCHES	101 -0

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
12	Digital Technique Digital Technique	Abhisheb (638) Hemant (651)	Decoders * Introductions * 3 to 8 Decoder * Enable input * BCD To decimal decoder * 4 to 16 decoder * Decoder application Multiplexers * Introduction * Data selectors * Diagrams * Decide A MUX	
14	Digital Technique	Rahul (659)	* Basic 2 i/p MUX * 4 i/p MUX * Applications Hip Hop * Introduction * Classification of ieguential circuit * Hip-Hop operation characteristics * Conversion of hip hops * Application	
15	Digital Technique	Runet (658)	Shift Registers * Introduction * Buffer Register * Controlled Buffer register	

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
	***		* SISO * PISO * SIPO * PIPO * Applications of shift registers	
16	Digital Technique	Mancha (659)	Counters * Interoduction * Asynchronous counters * Design of Asynchronous counters * Synchronous counter * Design of synchronous counters * Applications	# *
	, · · · · · · · · · · · · · · · · · · ·	*		

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

S.No	Subject	Name of Student .	Seminar Topic	Date of Seminar
01	Mechanics of composite materials	Gauraio (660)	Classification of composites * Introduction * Classification criteria's * Difference * Adavantage/Disadvantage	
02	Mechanics of composite materials	Robert (665)	Different types of fibers * Explain different types of fibers * Their properties * Surface treatment of these fiber * Advantage /uses	F 1
03	Mechanics of composite materials	Kundan (666)	Matric material * Introduction * Different types * Composition/ manufacturing * Properties * Advantage/disadvantage	
04	Mechanics of composite materials	Mayauls (667)	Manufacturing process 1st part * Introduction * Basic requirements of manufacturing methods * Explain - Open mould method - Continous method	

-					_
\mathbf{D}	.Tec	h C	ama	0+0	r 6
	100		21112	SIP	-

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
05	Mechanics of composite materials	Kushagéa (669)	Manufacturing process part-II * Introduction * Explain various types of "closed mold methods in detail"	
06	Mechanics of composite materials	Shailendra (64)	Unidirectional composites * Introduction * Properties * Advantage/Disadvantage	
07	Mechanics of composite materials	Gauran (679)	Properties of composites part-1 * Explain the following for unidirectional composites * Volume Traction * Desity * Longitudnal strength & stifness * Factor affecting these properties	
08	Mechanics of composite materials	Puryatan (682)	Properties of composites part-2 * Explain the following for unidirectional composites * Transverse strength & stifness * Shear modulus & strength * Poisson's ratio	
09	Mechanics of composite materials	Notesh (689)	Orthotropic lamina/composite * Introduction * Engineering constant & its relation with stiffness coefficients. * Strenght of orthotropic * Failure theories.	, , , , , , , , , , , , , , , , , , ,

	_ 1	\circ	
R	IACh	Semes	ter-h
D .		Collica	

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
10	Mechanics of composite materials	Sandrek (686)	Laminated composites * Analysis, Introduction * Lamination & delamination * Its requirement * Advantages * Properties like stress & strain	
11	Mechanics of composite materials	Rushpraj (687)	Properties of laminates * Explain the following regarding laminates * Thermal & Moisture expansion * Mass diffusion * Transport properties * Isotropic analysis	
12	Mechanics of composite materials	Mohet (695)	Short fibre composites * Introduction * Explain - Advantage fibre - Stress - Strength - Short fibre - Stress, strength - Interlaminar shear - Fracture Toughness	

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
13	Mechanics of composite materials	Ashish (697)	Maintenance of composites * Classification of damage * Inspection * Repair operation * Repair procedure	
14	Mechanics of composite materials	Praveen (700)	Various structure & precautions * Type of structure - Laminate - Honey comb - Sandwich * Light protection * Painting of composites	
15	Mechanics of composite materials	Aupita (701)	Quality control, application & advantage of composite over metal& alloys	
		•		